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Abstract

We present numerical schemes for the incompressible Navier–Stokes equations based on a primitive variable for-

mulation in which the incompressibility constraint has been replaced by a pressure Poisson equation. The pressure is

treated explicitly in time, completely decoupling the computation of the momentum and kinematic equations. The result

is a class of extremely efficient Navier–Stokes solvers. Full time accuracy is achieved for all flow variables. The key to

the schemes is a Neumann boundary condition for the pressure Poisson equation which enforces the incompressibility

condition for the velocity field. Irrespective of explicit or implicit time discretization of the viscous term in the mo-

mentum equation the explicit time discretization of the pressure term does not affect the time step constraint. Indeed, we

prove unconditional stability of the new formulation for the Stokes equation with explicit treatment of the pressure

term and first or second order implicit treatment of the viscous term. Systematic numerical experiments for the full

Navier–Stokes equations indicate that a second order implicit time discretization of the viscous term, with the pressure

and convective terms treated explicitly, is stable under the standard CFL condition. Additionally, various numerical

examples are presented, including both implicit and explicit time discretizations, using spectral and finite difference

spatial discretizations, demonstrating the accuracy, flexibility and efficiency of this class of schemes. In particular, a

Galerkin formulation is presented requiring only C0 elements to implement.
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1. Introduction

The classical primitive variables formulation of the incompressible Navier–Stokes equations on a do-
main X � R3 (or R2) are given by
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ut þ ðu � rÞuþrp ¼ mDuþ f ; ð1:1aÞ
r � u ¼ 0; ð1:1bÞ
ujC ¼ 0; ð1:1cÞ

where u ¼ ðu; v;wÞT (or u ¼ ðu; vÞT), p, m, f , and C represent the velocity field, pressure, kinematic viscosity,

force term, and boundary of X, respectively. Note that, for simplicity of presentation, we have taken the no-

slip boundary condition (1.1c) for u.
Beginning with the pioneering MAC scheme [17] of Harlow and Welch in 1965, enforcement of the

incompressibility constraint (1.1b) has always been, and rightly so, a central theme in the development of

numerical methods for the Navier–Stokes equations. MAC scheme is a direct discretization of (1.1) using

second order finite differences implemented on a staggered grid with explicit time treatment of the nonlinear

convection and viscous terms, and implicit time treatment of the pressure term. In addition to enforcing

incompressibility, the key success of the scheme is its efficiency, which results from the decoupling of the

computation of the momentum and kinematic equations. This is accomplished by applying the incom-

pressibility constraint to the discretized momentum equation, resulting in a discrete Poisson equation for
the pressure. However, besides the restriction to a second order finite difference discretization for simple

domains, there are three main drawbacks to the MAC scheme in its original form: (1) if the viscous term is

treated implicitly the decoupling process is no longer possible, (2) parasitic pressure modes can arise if

alternative spatial discretizations (e.g. a non-staggered grid) are used; the resulting discrete system has more

unknowns than equations (cf. [20]), and (3) low order time discretization was used, resulting in a severe cell

Reynolds number time step constraint.

Of course, in the intervening years much work has gone into addressing the shortcomings of the MAC

scheme. In the late 60s Chorin [6] and Temam [32] introduced the projection method, which allows
implicit treatment of the viscous term while retaining the efficiency of the MAC scheme. Projection

methods are time splitting schemes in which an intermediate velocity is first computed and then projected

onto the space of incompressible vector fields by solving a Poisson equation for pressure. Unfortunately,

the time splitting introduces numerical boundary layers in the pressure and intermediate velocity field. It

is possible to avoid them in the velocity field if an exact projection is used. However, this can only be

achieved in simple geometries (e.g. one for which a staggered grid can be implemented), and even in this

case the numerical boundary layers remain in the pressure. Greater control in reducing these numerical

boundary layers was gained with the development of modern second order projection methods in the mid
80s [1,21,24,26,35]. They are by far the most popular schemes used in practice for Navier–Stokes, par-

ticularly for moderate to high Reynolds number flows since the strength of the numerical boundary layer

decreases with increasing Reynolds number. However, the main advantage of implicit treatment of the

viscous term in the projection method is for low Reynolds number flow, and in this regime the effects of

the numerical boundary layers are quite severe [10]. Attempts to better understand and control these

numerical artifacts remain an active area of research (cf. [10,33]). Indeed, a second order implicit pro-

jection method which achieves full temporal accuracy for both the velocity and pressure in rectangular

domains was recently proposed by Brown et al. [3]. Unfortunately, due to the high order spatial deriv-
atives required in their pressure update it is doubtful that full accuracy for the pressure can be achieved in

general domains.

For the low Reynolds number (diffusion dominated) flow regime, fast Stokes solver schemes for fully

coupled systems, particularly popular in the finite element community, have proven highly successful due to

the maturity of multigrid, preconditioned conjugate-gradient and domain decomposition methods (cf.

[12,13,36]). To avoid spurious pressure modes in the coupled system, the so-called inf–sup compatibility

condition (or Babuska–Brezzi condition) between the pressure and velocity finite element approximation

spaces has to be satisfied (cf. [13]). Unfortunately, this generally complicates the implementation of fast
solvers for the resulting linear systems. Moreover, application of Stokes type solvers for the high Reynolds
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number convection dominated regime is not recommended, for as the Reynolds number increases the

convergence rate of the iterative linear solvers is significantly diminished.

Concerning the cell Reynolds number constraint, its cause is now well understood and is easily cir-
cumvented. Low order explicit time stepping schemes such as forward Euler and the Midpoint rule are

unconditionally unstable for linear convection (transport) equations if center differencing is used for the

spatial discretization; inclusion of a diffusion term stabilizes such schemes. However, for moderate to large

Reynolds numbers the eigenvalues of the linearized system cluster near the imaginary axis but away from

the real axis. Since the stability regions of low order explicit time stepping schemes do not encompass any

portion of the imaginary axis the result is the cell Reynolds number constraint. The remedy is to simply use

a higher order explicit scheme, such as classical fourth order Runge–Kutta, whose stability region contains

an appreciable portion of the imaginary axis (cf. [7]).
In this paper we introduce a class of the numerical methods for Navier–Stokes equations based on the

following equivalent pressure Poisson equation formulation of (1.1):
ut þ ðu � rÞuþrp ¼ mDuþ f ; ð1:2aÞ
Dp ¼ �r � ðu � ruÞ þ r � f ; ð1:2bÞ
op
on

����
C

¼ ½�mn � ðr � r� uÞ þ n � f �jC; ð1:2cÞ

ujC ¼ 0 ð1:2dÞ
which is derived in Section 2. Here the incompressibility constraint r � u ¼ 0 has been replaced by a

pressure Poisson equation (1.2b) and a Neumann boundary condition for the pressure (1.2c). This

pressure boundary condition was first proposed by Orszag et al. [26] in the context of the projection

methods for accuracy consideration, and it is referred to therein as an accurate pressure boundary

condition. Their motivation for using it was as a means to both enforce a compatibility condition for the

discrete linear system for pressure with a Neumann boundary condition, as well as a way of better en-

forcing incompressibility. Our primary motivation for using (1.2c), in addition to providing an imple-
mentable boundary condition for (1.2b), is for stability considerations. We show that irrespective of

explicit or implicit time discretization of the viscous term in (1.2a), explicit time discretization of the

pressure term does not affect the time step constraint. Indeed, unconditional stability for the Stokes

equation with explicit treatment of the pressure term and implicit treatment of the viscous term is proven

in Section 3.2. The proof relies on the observation that the pressure can be solved for in terms of the

tangential component of the velocity, which in turn is controlled by the tangential component of the

viscous term. Systematic numerical experiments are presented in Section 4.1 for the full NSE which in-

dicate that a second order implicit time discretization of the viscous term that (1.2) is stable under the
standard CFL condition.

The schemes based on (1.2) presented herein are also extremely efficient, for regardless of implicit or

explicit treatment of the viscous term, explicit treatment of the pressure term decouples the computation of

the momentum equation (1.2a) from that of the kinematic pressure Poisson equation (1.2b). The main

computational cost at each time stage is then reduced to solving a standard Poisson equation, and two or

three (2D or 3D) standard Helmholtz equations if the viscous term is treated implicitly. Moreover, full time

accuracy is achieved for all flow variables.

Finally, the class of methods presented herein is quite flexible, for any standard spatial discretization
such as finite difference, finite element or spectral methods can be used to approximate (1.2). In particular, a

variational formulation for (1.2), derived in Section 2.1, is given by: Find u 2 L2ð0; T ; ðH 1
0 ðXÞ \ H 2ðXÞÞd and

p 2 L2ð0; T ;H 1ðXÞ=CÞ such that 8v 2 ðH 1
0 ðXÞÞ

d
and 8w 2 H 1ðXÞ=C
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hut; vi þ hu � ru; vi þ hrp; vi ¼ �mhru;rvi þ hf ; vi; ð1:3aÞ
hrp;rwi ¼ �hu � ru;rwi þ hf ;rwi þ mhr � u; n�rwiC: ð1:3bÞ

Note that only first order derivatives appear above, hence standard C0 finite element spaces can be used to

approximate the system, particularly desirable for a finite element implementation.
The remainder of this paper is organized as follows. In Section 2 equivalent pressure Poisson for-

mulations of the Navier–Stokes equations are considered. We discuss why (1.2) is to be preferred for

numerical implementation, and the Galerkin formulation (1.3) is derived. Time discretization issues are

discussed in Section 3. In particular, we prove that both a first and second order semi-implicit dis-

cretization of (1.2) applied to the Stokes equations is unconditionally stable. A Chebyshev collocation

implementation of (1.2) coupled with a second order implicit time discretization is presented in Section

4. The numerical results clearly indicate stability with respect to the standard CFL condition. A

MATLAB code of this implementation can be found in Appendix A. A Legendre–Galerkin imple-
mentation of (1.3) coupled with explicit time discretization is presented in Section 5. Finally, in Section

6 a finite difference implementation of (1.2) is briefly discussed and the computation a flow past a

cylinder in 2D presented.
2. Pressure Poisson formulations of the Navier–Stokes equations

In this section we investigate a number of Pressure Poisson equation (PPE) formulations of the Navier–
Stokes equations (NSE). While each are equivalent to the NSE (1.1) at the continuous level the focus here is

to understand why one formulation would be desirable over another as the basis for a numerical scheme.

The objective is a PPE which can be solved accurately, and whose solution properly enforces incom-

pressibility. The Galerkin formulation (1.3) in derived in Section 2.1.

To begin, recall the derivation of one possible form of the PPE. Taking the divergence of the momentum

equation (1.1a) along with (1.1b) gives

Dp ¼ �r � ðu � ruÞ þ r � f : ð2:1Þ

Enforcing the incompressibility constraint (1.1b) through the use of this PPE has been a main focus in
the development of numerical methods for incompressible flow [14,15]. However, solely replacing (1.1b)

by (2.1) does not result in a system equivalent to the NSE (1.1); additional conditions need to be

enforced. Moreover, there is some choice in these conditions depending on the form of the PPE itself.

For example:

(I) Enforce a divergence-free boundary condition for the velocity:

r � ujC ¼ 0: ð2:2Þ

A system equivalent to (1.1) [14,20] consists of: (1.1a), (2.1), (1.1c), and (2.2). The necessity and role of the

boundary condition (2.2) can be seen by deriving a evolution equation for / ¼ r � u. Take the divergence of
(1.1a) and substitute the PPE (2.1) in the expression that results. Then assuming a divergence-free velocity

field u at t ¼ 0, / is governed by the heat equation (PDE)

/t ¼ mD/ for t > 0;
/jC ¼ 0 for t > 0;
/ð0Þ ¼ 0;

8<: ) / ¼ r � u � 0 for tP 0:



H. Johnston, J.-G. Liu / Journal of Computational Physics 199 (2004) 221–259 225
Thus, incompressibility of u is enforced for t > 0 via (2.2) in the form of the homogeneous boundary

condition for / above. Note that for this PPE formulation there are two boundary conditions for u, namely

(1.1c) and (2.2), and none for p. The realization of (2.2) generally requires a global constraint, as in the
spectral implementation of the capacitance matrix method [25]. In [19,20] the authors investigated a spa-

tially second order finite difference method in which (2.2) is converted at the discrete level to a consistent

local formula for the Neumann pressure boundary condition

ðop=onÞ0;j ¼ ð2m=Dx2Þðn � uÞ1;j;

where the subscript ð0; jÞ represents the value at grid point ðx0; yjÞ on the the boundary (assume here a

boundary parallel to the y-axis), and the subscript ð1; jÞ represents the value at the grid point ðx1; yjÞ, one
stencil point inside the boundary. The derivation of this local pressure boundary condition is very similar to
the derivation of a local vorticity boundary condition known as Thom’s formula; see [7,20]. A higher order

version of this approach was considered by Henshaw [18]. Unfortunately, when this local pressure

boundary condition is used with explicit treatment of the pressure term a diffusive stability time constraint

must be satisfied even in the case when the viscous term is treated implicitly. However, this drawback can be

overcome by using the pressure boundary condition in (1.2), described in (IV).

(II) Retain the viscosity term in the PPE:

Dp ¼ �r � ðu � ruÞ þ mDðr � uÞ þ r � f : ð2:3Þ

An system equivalent to (1.1) [14] is given by: (1.1a), (2.3) and (1.1c). Taking the divergence of (1.1a) and

applying (2.3) gives the following evolution equation for / (ODE):

/t ¼ 0 for t > 0;
/ð0Þ ¼ 0;

�
) / ¼ r � u � 0 for tP 0; ð2:4Þ

again ensuring incompressibility of u for t > 0. However, the third order derivative in the PPE would re-

quire at least C1 elements be used in a finite element implementation of this formulation.

(III) Rewrite the viscous term in rotational form:

ut þ ðu � rÞuþrp ¼ �mr�r� uþ f : ð2:5Þ

An equivalent system is given by: (2.5), (2.1) and (1.1c). Again / is governed by the ODE system (2.4),

ensuring incompressibility. This formulation is well suited for numerical discretization only if we treat the

viscous term in (2.5) explicitly. Implicit treatment would result in a coupled system for all the components

of u, and solving this non-standard elliptic system numerically, especially in 3D, is costly.

(IV) Enforce the following Neumann boundary condition for the pressure:

op
on

¼ �mn � ðr � r� uÞ þ n � f ; ð2:6Þ

where n is a unit normal along C. A system equivalent to (1.1) is then given by

ut þ ðu � rÞuþrp ¼ mDuþ f ; ð2:7aÞ
Dp ¼ �r � ðu � ruÞ þ r � f ; ð2:7bÞ
op
on

����
C

¼ ½�mn � ðr � r� uÞ þ n � f �jC; ð2:7cÞ

ujC ¼ 0; ð2:7dÞ
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the same as (1.2) and repeated here for convenience. To see that incompressibility is enforced recall the

vector identity

Du ¼ �r�r� uþrðr � uÞ: ð2:8Þ

Taking the normal component of the momentum equation (2.7a) along C and using (2.8) gives

op
on

����
C

¼
�
� mn � ðr � r� uÞ þ m

oðr � uÞ
on

þ n � f
�����

C

:

Comparing with (2.7c) we have

oðr � uÞ
on

����
C

¼ 0: ð2:9Þ

Next, take the divergence of (2.7a) and apply the PPE (2.7b). The result is a heat equation (PDE) for / with

boundary condition (2.9) given by

/t ¼ mD/ for t > 0;
o/
on

��
C
¼ 0 for t > 0;

/ð0Þ ¼ 0;

8<: ) / ¼ r � u � 0 for tP 0: ð2:10Þ

As noted in Section 1, the pressure boundary condition (2.7c) was first proposed for the projection

method [26], and referred to therein as an accurate pressure boundary. The motivation for using (2.7c) in

that work was as a means to both enforce a compatibility condition for the discrete linear system for

pressure with a Neumann boundary condition, as well as to, in view of (2.8), better enforce incom-

pressibility.

There are significant advantages of (2.7) in terms of numerical implementation when compared to the
other PPE formulations. First, both the momentum equation and PPE are endowed with boundary con-

ditions which are straight forward to implement; the no-slip boundary condition (2.7d) is used for the

velocity update, and the Neumann boundary condition (2.7c) for the pressure update. Second, any standard

spatial discretization such as finite difference, finite element or spectral methods can be applied to (2.7).

These implementations are considered in Sections 4–6. In each case we treat the pressure term explicitly in

time, decoupling the computation of (2.7a) and (2.7b), which results in a class of extremely efficient NSE

solvers. Finally, systematic numerical experiments are presented in Section 4.1 showing that a second order

implicit time discretization of the viscous term, with the pressure and convective terms treated explicitly, is
stable under the standard CFL condition. Thus, the schemes presented herein are well suited for all

Reynolds number flow regimes.

Remark. The PPE formulation (2.7) and the classical formulation of the NSE (1.1) are not equivalent in the

case of steady state flows. This is clear, for in (2.10a) the time derivative /t is now absent, and hence non-

zero constant solutions are possible due to the Neumann boundary condition (2.10b). In fact, of the four

formulations discussed above it is easily verified that only for formulation (I) does one have equivalence

with (1.1) for steady state flows.
2.1. Galerkin formulation of the PPE system

We derive the Galerkin formulation (1.3) by recasting (2.7) in a variational form. Denote an inner

product on X by h�; �i, and integration over the boundary C by h�; �iC. Our variational form of the mo-

mentum equation (2.7a) is standard. For all smooth test functions v with vjC ¼ 0 find u such that
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hut; vi þ hu � ru; vi þ hrp; vi ¼ �mhru;rvi þ hf ; vi: ð2:11Þ

For the PPE (2.7b), first take the inner product of Dp and a smooth test function w. Then Green’s formula
and the boundary condition (2.7c) gives

hDp;wi ¼ �hrp;rwi � mhn � ðr � r� uÞ;wiC þ hn � f ;wiC:

Further applying the vector identity

hn � ðr � r� uÞ;wiC ¼ hr �r� u;rwi ¼ �hr � u; n�rwiC ð2:12Þ

above gives

hDp;wi ¼ �hrp;rwi þ mhr � u; n�rwiC þ hn � f ;wiC: ð2:13Þ

We note the importance of the identity (2.12) here, for it reduces the regularity requirements on u and

allows the use of C0 elements below in (2.15). Next, take the inner product of the right-hand side of the PPE

(2.7b) with w and integrate by parts to arrive at (also using (2.7d))

h�r � ðu � ruÞ þ r � f ;wi ¼ hu � ru;rwi � hf ;rwi þ hn � f ;wiC; ð2:14Þ

Combining (2.13) and (2.14), along with (2.11), we have our full variational formulation for (2.7), namely

hut; vi þ hu � ru; vi þ hrp; vi ¼ �mhru;rvi þ hf ; vi; ð2:15aÞ
hrp;rwi ¼ �hu � ru;rwi þ hf ;rwi þ mhr � u; n�rwiC: ð2:15bÞ

In order to make sense of the term hr � u; n�rwiC there are two choices:
(i) Require ðr � uÞjC 2 H 1=2ðCÞ and ðn�rwÞjC 2 H�1=2ðCÞ. This can be realized if u 2 H 2 and w 2 H 1.

With this choice our variational formulation is given by: Find u 2 L2ð0; T ; ðH 1
0 ðXÞ \ H 2ðXÞÞd and

p 2 L2ð0; T ;H 1ðXÞ=CÞ such that (2.15) is satisfied 8v 2 ðH 1
0 ðXÞÞ

d
and 8w 2 H 1ðXÞ=C.

(ii) Require ðr � uÞjC 2 L2ðCÞ and ðn�rwÞjC 2 L2ðCÞ, which can be realized by imposing these constraint

on the velocity and pressure spaces. We thus take

X ¼ fu 2 ðH 1
0 ðXÞÞ

d
; ðr � uÞjC 2 L2ðCÞg and Y ¼ fw 2 H 1ðXÞ=C; ðn�rwÞjC 2 L2ðCÞg:

With this choice our variational formulation is given by: Find u 2 L2ð0; T ;X Þ and p 2 L2ð0; T ; Y Þ such that

(2.15) is satisfied 8v 2 X and 8w 2 Y .
The variational formulation (2.15) is highly advantageous for, in the context of case (ii) above, it can be

implemented using standard C0 finite elements. To explain, assume X is a polygonal domain. Let Xh be a

standard C0 finite element space for the approximate velocity uh and test functions vh with zero boundary

values, and Yh a standard C0 finite element space for the pressure ph and test functions wh. Then r� uh and
n�rwh are piecewise polynomials on C and hence in L2ðCÞ. Moreover, Xh � X and Yh � Y . A finite ele-
ment implementation is then given by: Find uh 2 L2ð0; T ;XhÞ and ph 2 L2ð0; T ; YhÞ such that 8vh 2 Xh and

8wh 2 Yh

hotuh; vhi þ huh � ruh; vhi þ hrph; vhi ¼ �mhruh;rvhi þ hf ; vhi; ð2:16aÞ
hrph;rwhi ¼ �huh � ruh;rwhi þ hf ;rwhi þ mhr � uh; n�rwhiC: ð2:16bÞ

Numerical results of a Legendre–Galerkin implementation of (2.16) are presented in Section 5. We note

that in [16] a related Galerkin formulation was proposed which can be implemented using C0 elements after

a projection of the discontinuous function r � uh for the pressure variable update in their scheme.
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3. Explicit treatment of the pressure term and stability results

The computational efficiency of the schemes presented here relies on the fact that the pressure term is
always treated explicitly in time so that the velocity and pressure updates are completely decoupled. Of

course, the nonlinear convection term is also treated explicitly in time to avoid the costly solution of a

nonlinear system at each time stage. Thus, we treat the convection and pressure terms together in the time

discretization. What remains to be decided is the temporal discretization of the viscous term, and in this

section we explain why this choice is not affected by the explicit discretization of the pressure in our PPE

formulation (2.7).

Whether one treats the viscous term explicitly or implicitly in time depends on the Reynolds number

regime of the flow and the required spatial resolution. The choice is determined by (1) the diffusive stability
constraint

m
Dt
Dx2

6 ð1=2Þd ; ð3:1Þ

where Dx is the smallest grid resolution and d is the dimension, (2) the convective stability constraint of the

usual CFL type

kukL1
Dt
Dx

¼ CFL6 1 ð3:2Þ

and (3) the stability region(s) of the time discretization(s) used for each term in the momentum equation. If

m is small (large Reynolds number regime) implicit treatment of the viscous term does nothing to stabilize

the convection term. Hence, for the large Reynolds number regime an explicit time discretization should be

used, but only if it is a convectively stable time stepping scheme, such as RK4. This is due to the fact that the
stability region of RK4 encompasses a appreciable portion of the imaginary axis. In this case, unless the

computation is over resolved, stability is governed by (3.2) rather than (3.1). In contrast, if a low order

explicit scheme whose stability region did not encompass any portion of the imaginary axis, such as forward

Euler or the Midpoint rule, a severe cell Reynolds number constraint would result (cf. [7]).

For large m (small Reynolds number regime) the time constraint due to (3.1) dominates (3.2). In this case

implicit treatment of the viscous term is clearly indicated to avoid (3.1). For example, one possible second

order semi-implicit time discretization of (2.7a) (or (1.2)), with Crank–Nicholson applied to the viscous

term and Adams–Bashforth discretization for both the convection pressure terms, is given by

unþ1 � un

Dt
þ 3

2
ðun � run þrpnÞ � 1

2
ðun�1 � run�1 þrpn�1Þ ¼ m

2
Dðunþ1 þ unÞ þ f nþ1=2;

unþ1jC ¼ 0:

ð3:3Þ

The PPE (2.7b) is then solved using

Dpnþ1 ¼ �r � ðunþ1 � runþ1Þ þ r � f nþ1;

opnþ1

on

����
C

¼
�
� mn � ðr � r� unþ1Þ þ n � f nþ1

�����
C

;
ð3:4Þ

As for the issue of whether or not treating the pressure explicitly imposes any stability constraint on the

time step, if the viscous term is also treated explicitly then the stability is determined by both constraints

(3.1) and (3.2). If the viscous term is treated implicitly, we show in Sections 3.1 and 3.2 that the standard

CFL constraint (3.2) is sufficient for stability for a first or second order semi-implicit time discretization. In

particular, we show unconditional stability for the Stokes equation in a flat domain. Numerical experiments
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are then reported in Section 4 which show that (3.3) and (3.4) is stable under the standard CFL condition,

and u, p, r � u ¼ 0 and x ¼ r� u all achieve full second order accuracy in time.

Remark. We note that the strategy of treating the convection and pressure terms together explicitly in time

(such as in (3.3)) is a common approach found in spectral methods for simulating homogeneous turbulence

in a periodic box. For such problems the viscous term is generally treated implicitly using an integrating

factor. The analog of (1.2) for this case of periodic boundary conditions is given by

ut þ ðu � rÞuþrp ¼ mDuþ f ; ð3:5aÞ
Dp ¼ �r � ðu � ruÞ þ r � f : ð3:5bÞ

Solving the PPE, i.e. p ¼ �D�1
P r � ðu � ru� f Þ where the subscript P denotes the solution with peri-

odic boundary conditions, and then substituting this expression for p into the momentum equation above

gives

ut þ P ðu � rÞu ¼ mDuþ P f :

P ¼ ðI �rD�1
P r�Þ is the projection operator associated with the Helmholtz decomposition. Important here

is that the incompressibility of the velocity field is accurately enforced [4,5,23,27].
3.1. Analysis of the tangential pressure gradient and tangential viscous forces for the Stokes equations

We consider the behavior of solutions to the Stokes equations in the new pressure Poisson formulation

(2.7). Two important observations are: (i) the pressure can be solved for in terms of the tangential velocity,

and (ii) the tangential pressure gradient is an unstable force, however, it is dominated by the tangential
viscous term. As a consequence, we show in Section 3.2 that explicit treatment of the pressure is uncon-

ditionally stable when the viscous term is treated implicitly with a first or second order scheme. These

observations shed light as to why handling of the pressure term is a very delicate issue. Indeed, of the

pressure Poisson formulations that were discussed in Section 2 we found (2.7) the most advantageous in

terms of stability. To explain why, consider the Stokes equation on a domain X ¼ ½�1; 1� � ð0; 2pÞ with

periodic boundary conditions in y. The pressure Poisson formulation for the NSE (2.7) applied to the

Stokes equation in this domain is given by

ut þrp ¼ mDu; ð3:6aÞ
Dp ¼ 0; ð3:6bÞ
ujx¼�1;1 ¼ 0; px þ moyðvx � uyÞjx¼�1;1 ¼ 0: ð3:6cÞ

Since ujx¼�1;1 ¼ 0 and uy jx¼�1;1 ¼ 0, one has

px þ moyðvx � uyÞjx¼�1;1 ¼ oxðp þ mvyÞjx¼�1;1 ¼ 0: ð3:7Þ

Hence p þ mvy is a solution of the homogeneous Neumann problem

Dðp þ mvyÞ ¼ mDoyv; oxðp þ mvyÞjx¼�1;1 ¼ 0:

Denoting its solution operator by D�1
N , we can write the pressure as

p ¼ mðD�1
N D� IÞoyv:
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Important here is that the solution only involves the tangential velocity v! Substituting this expression for p
into the v component of the momentum equation (3.6a) gives

vt � mDvþ moyðD�1
N D� IÞoyv ¼ 0: ð3:8Þ

Denoting the pressure operator as B ¼ oyðD�1
N D� IÞoy , and let h�; �i be the standard inner product. The key

observations are:

(i) For any u; v 2 H 2 \ H 1
0 , we have

hDu;Bvi ¼ hDv;Bui ð3:9aÞ

and

hDv;BviP 0: ð3:9bÞ

(ii) B is dominated by �D in the sense that

hDv;Bvi6 kDvk2: ð3:10Þ

To verify (3.9a), take u; v 2 H 2 \ H 1
0 and let w ¼ D�1

N Du and / ¼ D�1
N Dv, i.e. w and / solve

Dw ¼ Du; onwjx¼�1;1 ¼ 0 ð3:11aÞ

and

D/ ¼ Dv; on/jx¼�1;1 ¼ 0; ð3:11bÞ

respectively. From (3.11b) we have

Bv ¼ oyðD�1
N D� IÞoyv ¼ oyy/� oyyv;

which along with (3.11a) gives

hDu;Bvi ¼ hDu; oyy/i � hDu; oyyvi ¼ hDw; oyy/i � hDu; oyyvi:

Integrating each term on the right by parts, along with the boundary conditions in (3.11a) and (3.11b), gives

hDu;Bvi ¼ hroyw;roy/i � hroyu;royvi: ð3:12Þ

Interchanging the arguments on the right-hand side above, along with the symmetry of the inner product,

proves (3.9a). Next, from (3.12) one has

hDv;Bvi ¼ hroy/;roy/i � hroyv;royvi: ð3:13Þ

Integrating by parts and using (3.11b) gives

kroyvk2 ¼ hroyv;royvi ¼ �hoyDv; oyvi ¼ �hoyD/; oyvi ¼ hroy/;royvi:

Applying the H€older inequality to the last term above and dividing by kroyvk shows that

kroyvk6 kroy/k. This together with (3.13) proves (3.9b). For (3.10), note that (3.13) implies

hDv;Bvi6 hroy/;roy/i ¼ hoxy/; oxy/i þ hoyy/; oyy/i; ð3:14Þ

while a direct computation gives

hD/;D/i ¼ hoxx/; oxx/i þ 2hoxx/; oyy/i þ hoyy/; oyy/i ¼ hoxx/; oxx/i þ 2hoxy/; oxy/i þ hoyy/; oyy/i;
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since integration by parts gives hoxx/; oyy/i ¼ hoxy/; oxy/i. Hence, each of the terms above are non-negative,

which along with (3.14) and (3.11b) gives

hDv;Bvi6 hD/;D/i ¼ hDv;Dvi;

proving (3.10).
3.2. Unconditional stability analysis

With the above key observations, we first prove that the following first order semi-implicit scheme for

our PPE formulation applied to the Stokes equation, namely

vnþ1 � vn

Dt
� mDvnþ1 þ mBvn ¼ 0; ð3:15Þ

is unconditionally stable. Indeed, taking the inner product of �Dðvnþ1 þ vnÞ with each term in (3.15)

gives

�
� Dðvnþ1 þ vnÞ; v

nþ1 � vn

Dt

�
¼ krvnþ1k2 � krvnk2

Dt
;

h�Dðvnþ1 þ vnÞ;�Dvnþ1i ¼ 1

2
ðkDvnþ1k2 � kDvnk2Þ þ 1

2
kDðvnþ1 þ vnÞk2;

h�Dðvnþ1 þ vnÞ;Bvni ¼ 1

2
hDðvnþ1 þ vnÞ;Bðvnþ1 � vnÞi � 1

2
hDðvnþ1 þ vnÞ;Bðvnþ1 þ vnÞi:

Using (3.9a) one has

hDðvnþ1 þ vnÞ;Bðvnþ1 � vnÞi ¼ hDvnþ1;Bvnþ1i � hDvn;Bvni;

and from (3.10) we see that

hDðvnþ1 þ vnÞ;Bðvnþ1 þ vnÞi6 kDðvnþ1 þ vnÞk2:

Thus, we have the energy estimate

krvnþ1k2 � krvnk2

Dt
þ m
2
ðkDvnþ1k2 � kDvnk2Þ þ m

2
ðhDvnþ1;Bvnþ1i � hDvn;BvniÞ6 0;

or

krvnþ1k2 þ mDt
2

kDvnþ1k2 þ mDt
2

hDvnþ1;Bvnþ1i6 krvnk2 þ mDt
2

kDvnk2 þ mDt
2

hDvn;Bvni: ð3:16Þ

From (3.9b) we know that the last term on each side above is non-negative, which shows that (3.15) is

unconditionally stable. For a second order semi-implicit scheme we discretize the pressure term using

second order Adams–Bashforth and the viscous term with Crank–Nicholson, which reads

vnþ1 � vn

Dt
� mD

vnþ1 þ vn

2
þ mB

3vn � vn�1

2
¼ 0: ð3:17Þ
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Unfortunately we cannot show stability of (3.17) using energy estimates. We thus resort to normal modes

analysis. Setting vn ¼ jnbv, (3.17) becomes

2ðj2 � jÞbv � mðj2 þ jÞDtDbv þ mð3j� 1ÞDtBbv ¼ 0:

Taking the inner product of the above equation with �Dbv gives

2ðj2 � jÞkrbvk2 þ mðj2 þ jÞDtkDbvk2 � mð3j� 1ÞDthDbv;Bbvi ¼ 0 ð3:18Þ

Now write (3.18) as aj2 � bjþ c ¼ 0, with a ¼ 2krbvk2 þ mDtkDbvk2, b ¼ 2krbvk2 � mDtkDbvk2 þ
3mDthDbv;Bbvi, and c ¼ mDthDbv;Bbvi. Using (3.9b) and (3.10) one can easily verify that 06 c < a, jbj < aþ c.
Hence all the eigenvalues j of the normal modes are strictly in the unit disk [31], indicating that (3.16) is

unconditionally stable. Since we have obtained bounds on vn, and hence on pn, pn can be treated as a force

term in the u component of the momentum equation (3.6a). We omit the details.

We now have a second order unconditionally stable scheme for Stokes equation (3.6), namely

unþ1 � un

Dt
þ ox

3pn � pn�1

2
¼ mD

unþ1 þ un

2
; unþ1jx¼�1;1 ¼ 0; ð3:19aÞ

vnþ1 � vn

Dt
þ oy

3pn � pn�1

2
¼ mD

vnþ1 þ vn

2
; vnþ1jx¼�1;1 ¼ 0; ð3:19bÞ

Dpnþ1 ¼ 0; oxpnþ1jx¼�1;1 ¼ moyðoxvnþ1 � oyunþ1Þjx¼�1;1: ð3:19cÞ

Normal mode of analysis of (3.19) is presented in Appendix C which shows that second order time accuracy

is achieved for u, p and r � u. Moreover, the solutions are free of any numerical boundary layers.
This second order scheme applied to the pressure Poisson formulation of the full Navier–Stokes

equation (2.7) gives (3.3) and (3.4). To reiterate, since the pressure term is treated explicitly in the mo-

mentum equation, the computation of (3.3) is decoupled from that of (3.4). The cost then consists of solving

a standard Poisson equation, and two or three (2D or 3D) standard Helmholtz equations. Higher order

stiffly stable schemes such as explicit–implicit Runge–Kutta methods [29], multi-step Adams–Bashforth/

Adams–Moulton methods [21], or exponential time differencing fourth order Runge–Kutta methods [22]

could also be used for the time discretization.
4. Chebyshev spectral collocation: implementation and numerical results

We present implementation details of our PPE formulation using Chebyshev spectral collocation coupled

with the second order semi-implicit time discretization (3.3) and (3.4). Computational results of a 2D

problem, in the form of accuracy checks, are then presented. Moreover, a Dt convergence study clearly

indicates full second order accuracy in time, and also that the scheme is stable under the standard CFL

constraint (3.2). The MATLAB code used to produce these results can be found in Appendix A. First, in
place of the PPE system (1.2) (or (2.7)) we use the equivalent PPE formulation given by

ut þ ðu � rÞuþrp ¼ mDuþ f ; ð4:1aÞ

Dp ¼ 1

2
ðr � uÞ2 � ðruÞ : ðruÞT þr � f ; ð4:1bÞ

op
on

����
C

¼ ½ � mn � ðr � r� uÞ þ n � f �jC; ð4:1cÞ

ujC ¼ 0: ð4:1dÞ
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The proof of the equivalence of (4.1) and (1.1) is presented in Appendix B. The sole difference between (4.1)

and (1.2) is the right-hand side of the PPE (4.1b), where now only first derivatives appear. For the C1

functions used in the accuracy checks presented below, no significant differences in the computed results
were found between formulations (4.1) and (1.2). This is not to say that (4.1) would not prove useful in

computing a flow with less regularity, hence its inclusion here.

Since we are considering here 2D, for simplicity take X ¼ ½�1; 1�2 � R2. Recall for N > 0 the Chebyshev

points are given by

xi ¼ cosðði� 1Þp=NÞ; i ¼ 1; 2; . . . ;N þ 1; ð4:2Þ

which defines a discrete grid Ih for I ¼ ½�1; 1�, and let DN denote the ðN þ 1Þ � ðN þ 1Þ Chebyshev dif-

ferentiation matrix(cf. [2,28,34]). A discrete grid for X ¼ ½�1; 1�2 ¼ I � I is given by Xh ¼ Ih � Ih. Then for a

function aðx; yÞ and the ðN þ 1Þ � ðN þ 1Þ matrix A with Ai;j ¼ aðxi; yjÞ, we have

oa
ox

ðxi; yjÞ � ðDNAÞi;j;
oa
oy

ðxi; yjÞ � ðADT
N Þi;j;

o2a
ox2

ðxi; yjÞ � ðD2
NAÞi;j; for i; j ¼ 1; 2; . . . ;N þ 1;

and the approximations achieve spectral accuracy with increasing N if aðx; yÞ is a sufficiently smooth

function.
To facilitate the discussion below we set some notation. Unless otherwise noted, all matrices are as-

sumed to be ðN þ 1Þ � ðN þ 1Þ. I is the identity matrix, the discrete Laplacian is given by

DNA ¼ D2
NAþ AðD2

N Þ
T
, and Aðnþ1

2
Þ ¼ 3

2
An � 1

2
An�1, where the superscripts on the left refer to the n and n� 1

time step, thus Aðnþ1
2
Þ is distinguished from Anþ1

2. Furthermore, motivated by MATLAB matrix operations

syntax, A :�B denotes element-wise multiplication, i.e., ðA :�BÞi;j ¼ Ai;j � Bi;j, and A :^2 ¼ A :�A. Finally, the
boundary points of Xh are denoted by CN ¼ fði; jÞ : i or j equal 1 or N þ 1g, with CC

N � CN representing

the four corner points.

Given a Dt, let ðUn; V n; PnÞ and ðUn�1; V n�1; Pn�1Þ denote discrete solutions on Xh at times nDt and
ðn� 1ÞDt, respectively. Discretizing (4.1a) using (3.3) results in two Helmholtz equations for the velocity

components Unþ1 and V nþ1, which for Unþ1 reads

Unþ1 � Un

Dt
þ ðUn :�ðDNUnÞ þ V n :�ðUnDT

N Þ þDNP Þðnþ
1
2
Þ ¼ m

2
DNðUnþ1 þ UnÞ þ F

nþ1
2

1 ;

where F ¼ ðF1; F2ÞT represents the force term f ¼ ðf1; f2ÞT evaluated on Xh. Along with (4.1d), the linear

system for Unþ1 is given by

I

	
� mDt

2
DN



Unþ1 ¼ Un � Dt U :�ðDNUÞ

�h
þ V :�ðUDT

N Þ þ DNP
�ðnþ1

2
Þ � m

2
DNUn � F

nþ1
2

1

i
; ð4:3aÞ

Unþ1
��
CN

¼ 0: ð4:3bÞ

As is, system (4.3) is overdetermined since (4.3a) and (4.3b) represent ðN þ 1Þ2 and 4N equations, re-
spectively, for the ðN þ 1Þ2 unknowns Unþ1. However, note that since collocation is based on representation

in physical space we use the discrete homogeneous boundary condition (4.3b) to define for Unþ1on CN , with

(4.3a) used to determine Unþ1 at the ðN � 1Þ2 interior grid points of eXh ¼ Xh=CN . Denote by G the right-

hand side of (4.3a), and let eU ¼ Unþ1ð2 : N ; 2 : NÞ, with the analogous definitions for eG and eD2
N (each of

which are ðN � 1Þ � ðN � 1Þ). Then (4.3a) for eXh reads
eU � mDt
2

eD2
N
eU
þ eU ð eD2

N Þ
T
�
¼ eG; ð4:4Þ
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which can be solved efficiently using the matrix-diagonalization procedure [11,28]. To briefly explain, eD2
N is

diagonalizable hence eD2
N ¼ QKQ�1, where K ¼ diagfk1; . . . ; kN�1g, the ki are the eigenvalues of eD2

N , and the

columns of Q the corresponding eigenvectors. Defining bU ¼ Q�1 eU ðQTÞ�1
and bG ¼ Q�1 eGðQTÞ�1

, (4.4) is
equivalent to

bU � mDt
2

K bU
þ bUK

�
¼ bG ) bUi;j ¼

bGi;j

1� ðmDt=2Þðki þ kjÞ
; i; j ¼ 1; 2; . . . ;N � 1: ð4:5Þ

Then eU ¼ Q bUQT is recovered from the computation of bU above, and along CN (4.3b) is applied. This

completes the computation of Unþ1. A system analogous to (4.3) is similarly derived for V nþ1 (we omit the

details) and solved using the same procedure.
To compute Pnþ1, first discretize the PPE (4.1b) by

DNPnþ1 ¼ 1

2
ðDNUnþ1 þ V nþ1DT

NÞ :^2þDNF1 þ F2D
T
N � ðDNUnþ1Þ :^2

�
þ 2ðDNV nþ1Þ :�ðUnþ1DT

NÞ

þ ðV nþ1DT
NÞ :^2

�
: ð4:6Þ
Note that (4.6) represents ðN þ 1Þ2 equations for the ðN þ 1Þ2 unknowns Pnþ1, and we have yet to

enforce the PPE boundary condition (4.1c). To do so, analogous to our approach for (4.3), first apply

(4.6) only at the ðN � 1Þ2 interior grid points eXh ¼ Xh=CN . The result is ðN � 1Þ2 linear equations.
However, due to the global stencil of the differentiation matrices of DN these equations involve the

4ðN � 1Þ boundary points in CN=C
C
N . We remark that this was also the case when computing Unþ1 oneXh, but since (4.3b) is a homogeneous Dirichlet boundary condition it was transparent in going from

(4.3a) to (4.4).

Expressions for these 4ðN � 1Þ boundary values are derived using (4.1c), thus enforcing the Neumann

boundary condition for the PPE. To explain, first consider only 2ðN � 1Þ of them, namely those along

x ¼ 	1 excluding the corners, i.e., ðxi; yjÞ with i ¼ 1 or i ¼ N þ 1 and j ¼ 2; 3; . . . ;N . Next, a discretization

of the x-component of the right-hand side of (4.1c) is given by BC ¼ �mðDNV nþ1 � Unþ1DT
NÞDT

N þ F1. Then
a discrete application of (4.1c) along x ¼ 	1 reads

XNþ1

i¼1

d1;iP nþ1
i;j ¼ BC1;j and

XNþ1

i¼1

dNþ1;iP nþ1
i;j ¼ BCNþ1;j; for j ¼ 2; 3 . . . ;N ; ð4:7Þ

where di;j ¼ ðDN Þi;j. For each j (4.7) is a nonsingular 2� 2 linear system for Pnþ1
1;j and Pnþ1

Nþ1;j in terms of BC1;j,

BCNþ1;j and fPnþ1
i;j gNi¼2, from which the 2ðN � 1Þ required expressions are derived. This procedure is then

repeated by applying (4.1c) along y ¼ 	1 (again excluding the corners), and with the obvious modifications,

for the remaining 2ðN � 1Þ expressions for Pnþ1
i;1 and Pnþ1

i;Nþ1 for i ¼ 2; 3; . . . ;N .
A linear system for eP ¼ Pnþ1ð2 : N ; 2 : NÞ is now given by

D
2

N
eP þ eP ðD2

N Þ
T ¼ H ; ð4:8Þ

where D
2

N and H are, respectively, the interior elements ði; j ¼ 2; 3; . . . ;NÞ of D2
N and the right-hand side of

(4.6), with each modified to account for the expressions for Pnþ1 on CN=C
C
N derived above(see [28] for

details). D
2

N is diagonalizable, and hence (4.8) can also be solved using the matrix-diagonalization proce-

dure. Thus, let D
2

N ¼ RRR�1 where R ¼ diagfr1; . . . ; rN�1g, and let bP ¼ R�1eP ðRTÞ�1
andbH ¼ R�1HðRTÞ�1

. Note that D
2

N is singular with a one-dimensional null space [28], thus we assume r1 ¼ 0.
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This simply reflects the fact that solutions of the Neumann problem are unique up to a constant. Then a

particular solution of (4.8) is given by

RbP þ bPR ¼ bH ) bPi;j ¼
0 i ¼ j ¼ 1;bHi;j=ðri þ rjÞ otherwise;

�
ð4:9Þ

where the constant 0 is arbitrary, and we have Pnþ1ð2 : N ; 2 : NÞ ¼ eP ¼ RbPRT. The values of Pnþ1 on

CN=C
C
N is recovered from the expressions for them used in deriving (4.8). Finally, note that (4.7) also holds

for j ¼ 1;N þ 1, and hence Pnþ1 can be recovered at the four corner points CC
N by solving two 2� 2 linear

systems derived from these expressions.

Remark. In the algorithm above the values of the velocity field and pressure at the corner points CC
N of Xh

never enter the computation. Nonetheless, we recover the pressure at these points since it is often a quantity

of interest in applications.
4.1. Numerical results: Chebyshev collocation

In this section we report on numerical results of the Chebyshev collocation method outlined above. A

spatial accuracy check and temporal convergence study are presented. Assume exact solutions of (4.1) given

by

uðx; y; tÞ ¼ cos t cos2ðpx=2Þ cosðpy=2Þ sinðpy=2Þ;

vðx; y; tÞ ¼ � cos t cosðpx=2Þ sinðpx=2Þ cos2ðpy=2Þ;

pðx; y; tÞ ¼ cos t cosðpx=2Þ sinðpy=2Þ

ð4:10Þ

with the force term f (time dependent) chosen to ensure that (4.10) is a solution of (4.1). For m ¼ 1 we

computed solutions with grid sizes N ¼ 8:4:36 until a final time of T ¼ 2. The time step Dt was determined

from (3.2) with CFL ¼ 0:75, kukL1 ¼ 1, and Dx ¼ x1 � x2 ¼ 1� cosðp=NÞ.
In Fig. 1 is shown the L2 and L1 norm of the errors between the computed solutions and the

exact solution (4.10) evaluated on Xh. First, the results provide clear evidence that the scheme is

stable with respect to the CFL condition (3.2). In particular, the convective time constraint (3.2) with

N ¼ 36 gives Dt � 2:85� 10�3, while the diffusive time constraint (3.1), which due to the excellent
stability properties of the scheme we do not have to satisfy, would have required Dt � 3:62� 10�6.

Second, while spectral spatial accuracy is not immediately apparent as N is increased, recall that the

time discretization is only second order accurate, and is thus the limiting factor in these results. To

verify this we recomputed the results for each N with a fixed Dt ¼ 5� 10�6. The results are shown in

Fig. 2, where the spatial errors are seen to quickly saturate at the level of the time discretization error

for the chosen Dt.
Next, in order to verify the temporal accuracy a Dt convergence study with fixed spatial resolution,

N ¼ 36, was performed. This value of N is large enough to ensure that the spatial errors are on the order of
roundoff error in MATLAB. The results, shown in Fig. 3, clearly indicate that full second order time

accuracy is achieved for u and p, as well as the vorticity and divergence, in both the L2 and L1 norms.

Additionally, the time history of the divergence error in the L1 norm with Dt ¼ 10�3 and N ¼ 36 is shown

in Fig. 4. The final time is T ¼ 50, demonstrating the ability of the method to accurately enforce r � u ¼ 0

in long time simulations.
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Fig. 1. L2 and L1 norm errors at T ¼ 2 of collocation method applied to (4.10). Parameters: m ¼ 1, CFL ¼ 0:75.
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Finally, a plot of the pressure error with N ¼ 36 and with Dt determined from (3.2) with CFL ¼ 0:75 is

shown in Fig. 5. Note the absence of any numerical boundary layers.
5. Galerkin formulation: spectral implementation and numerical results

To validate the variational formulation (2.15) (or (1.3)) we present accuracy checks for a 2D test

problem using a Legendre–Galerkin spectral method. Since implicit time discretization was investigated for
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Fig. 2. L2 and L1 norm of error at T ¼ 2 of collocation method applied to (4.10) with Dt ¼ 5� 10�6.
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the collocation method in Section 4, here we focus on an explicit time discretization of (2.15) and consider

the moderate to large Reynolds number flow regime. As discussed in Section 3, in order to avoid a cell

Reynolds number constraint we use the convectively stable classical fourth order Runge–Kutta (RK4)
method. We emphasize that the intended application of the variational formulation (2.15) is for finite el-

ement methods for flows in general domains, which we leave to future works. Since our purpose here is

solely to validate the variational formulation we only briefly describe the numerical implementation. In

particular, the linear systems which arise are solved using standard methods. The interested reader is re-

ferred to [30] where efficient methods for solving linear systems arising from Legendre–Galerkin formu-

lations are discussed.
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Again for simplicity take X ¼ ½�1; 1�2 � R2. For nP 0 denote by LnðxÞ the nth degree Legendre poly-

nomial defined on ½�1; 1� and recall the orthogonality relation

ðLiðxÞ; LjðxÞÞ ¼
2

2iþ 1
di;j 8i; jP 0; ð5:1Þ
where ðf ; gÞ ¼
R 1

�1
f ðxÞgðxÞ dx. Also recall that L0

nðxÞ satisfies the recurrence relation
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L0
nðxÞ ¼

Xn�1

k¼0
kþn odd

ð2k þ 1ÞLkðxÞ: ð5:2Þ

Next, for nP 0 define

UnðxÞ ¼
Lnþ2ðxÞ � L0ðxÞ; n even;
Lnþ2ðxÞ � L1ðxÞ; n odd:

�
ð5:3Þ

Each UnðxÞ is a polynomial of degree n and Unð	1Þ ¼ 0.
Let N P 2. The approximation spaces Xh and Yh for the Galerkin formulation (2.15) (or (2.16)) are taken

to be

Xh ¼ spanfUiðxÞUjðyÞ : i; j ¼ 0; 1; . . . ;N � 2g; Yh ¼ spanfLiðxÞLjðyÞ : i; j ¼ 0; 1; . . . ;Ng; ð5:4Þ

and note that Xh � Yh, dimðXhÞ ¼ ðN � 1Þ2 and dimðYhÞ ¼ ðN þ 1Þ2.
Then given Dt, let ðUn; V n; PnÞ 2 Xh � Xh � Yh be a discrete solution at time tn ¼ nDt. Thus

Un ¼
XN�2

i;j¼0

eun
ijUiðxÞUjðyÞ; V n ¼

XN�2

i;j¼0

evnijUiðxÞUjðyÞ; Pn ¼
XN
i;j¼0

epn
ijLiðxÞLjðyÞ; ð5:5Þ

where eun
ij, evnij and epn

ij are uniquely determined by (5.1) and (5.3) applied in each coordinate direction.

Denote the spectral coefficient matrices for Un, V n and Pn by, respectively, ð eUnÞij ¼ eun
ij, ðeV nÞij ¼ evnij and

ðeP nÞij ¼ epn
ij.

As noted above, we treat the viscous term explicitly and use RK4 for the time discretization. Since each

time stage of RK4 is essentially a forward Euler step we use the latter for illustration. Recall that h�; �i
denotes integration over X and h�; �iC integration along the boundary C. Then (2.15a) for Unþ1 reads:
8/ 2 Xh find Unþ1 such that

Unþ1 � Un

Dt
;/

� �
þ hUnoxUn þ V noyUn;/i þ hoxP n;/i ¼ �mhrUn;r/i þ hF n

1 ;/i;

where ðF n
1 ; F

n
2 Þ

T
represents the force vector f at time tn. Solving for Unþ1 gives: 8/ 2 Xh find Unþ1 such that

hUnþ1;/i ¼ hUn;/i � Dt hUnoxUn
�

þ V noyUn þ oxP n � F n
1 ;/i þ mhrUn;r/i

�
: ð5:6Þ

The right-hand side above can be evaluated using (5.1)–(5.3). Hence (5.6) is a linear system for the ðN � 1Þ2
spectral coefficients eUnþ1 of Unþ1 whose coefficient matrix (mass matrix) is invertible. A system analogous

to (5.6) for V nþ1 is similarly derived and solved for eV nþ1.
Next, (2.15b) for Pnþ1 reads: 8w 2 Yh find Pnþ1 such that

hrPnþ1;rwi ¼ � hUnþ1oxUnþ1
�

þ V nþ1oyUnþ1; oxwi þ hUnþ1oxV nþ1 þ V nþ1oyV nþ1; oywi
�

þ hF nþ1
1 ; oxwi þ hF nþ1

2 ; oywi þ mhoxV nþ1 � oyUnþ1; ow=osiC; ð5:7Þ

where s ¼ n? and n is the unit outward normal along C. Since Unþ1 and V nþ1 are known, (5.7) is a linear

system for the ðN þ 1Þ2 spectral coefficients eP nþ1 of Pnþ1. However, the coefficient matrix (stiffness matrix) is

singular with a one dimensional kernel, reflecting the fact that the pressure, being the solution of a Neu-

mann problem, is unique up to an additive constant. Thus we choose a particular solution by settingepnþ1
00 ¼ 0.
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Of course for small Reynolds number flow we would treat the viscous term implicitly. For example a

second order scheme, following (3.3) and (3.4), is given by: 8/ 2 Xh find Unþ1 2 Xh such that

Unþ1 � Un

Dt
;/

� �
þ 3

2
hUnoxUn
�

þ V noyUn;/i þ hoxP n;/i
�
� 1

2
hUn�1oxUn�1
�

þ V n�1oyUn�1;/i

þ hoxP n�1;/i
�
¼ � m

2
hrðUnþ1 þ UnÞ;r/i þ hF nþ1=2

1 ;/i;

along with an analogous formula for V nþ1 and (5.7).
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Fig. 6. L2 and L1 norm errors at T ¼ 2 of Legendre–Galerkin error applied to (4.10). Parameters: m ¼ 0:001, CFL ¼ 0:75.
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Fig. 7. L2 and L1 norm of error at T ¼ 2 of Legendre–Galerkin method applied to (4.10) with Dt ¼ 5� 10�4.

242 H. Johnston, J.-G. Liu / Journal of Computational Physics 199 (2004) 221–259
5.1. Numerical Results: Legendre–Galerkin

We report numerical results of the Legendre–Galerkin method described above with explicit fourth

order Runge–Kutta for the time discretization. Both a spatial accuracy check and temporal convergence

study are presented. Again assume an exact solutions of the NSE given by (4.10). With m ¼ 0:001 we
computed solutions for grid sizes N ¼ 8:4:32 until a final time of T ¼ 2. The time step Dt was determined

from the minimum of (3.1) and (3.2) with CFL ¼ 0:75, kukL1 ¼ 1, and Dx the distance between the two

closest Gauss–Lobatto points for the given N .

In Fig. 6 is shown the L2 and L1 norm of the errors between the computed solutions and the exact

solution (4.10). Note that spectral spatial accuracy is more apparent here as N is increased then was the
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case for the collocation results in Section 4.1 since now the time discretization is fourth order accurate.
Moreover, for large N the timestep Dt is dictated by the diffusive time constraint (3.2). To verify this

conclusion we recomputed the results for each N with a fixed Dt ¼ 5� 10�4. The results are shown in

Fig. 7, where the spatial errors are seen to quickly saturate to the accuracy of double precision

roundoff.

As discussed in Section 3, for the case of explicit time discretization one expects the computed solutions

to achieve the full temporal accuracy of the scheme, which here is fourth order. To verify this a Dt con-
vergence study with fixed spatial resolution, N ¼ 20, was performed. This value of N is large enough to
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ensure that the spatial errors are on the order of roundoff error in MATLAB while at the same time allow

for a variation in Dt before roundoff is reached. The results, shown in Fig. 8, clearly indicate that full fourth

order time accuracy is achieved for u and p, as well as the vorticity and divergence, in both the L2 and L1

norms. It is only at the smallest Dt that these results deviate from fourth order accuracy. However, this can

be attributed to saturation of the errors at the level of roundoff. Additionally, the time history of the di-
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vergence error in the L1 norm with Dt ¼ 10�2 and N ¼ 20 is shown in Fig. 9. The final time is T ¼ 50,

demonstrating the ability of the method to accurately enforce r � u ¼ 0 in long time simulations.

Finally, a plot of the pressure error with N ¼ 32 is shown in Fig. 10. Note the clear absence of any
numerical boundary layers.
6. Finite difference implementation for flow past a cylinder

In this section we revisit an example from [20], and present results of a spatially second order finite

difference implementation of (1.2) applied to the computation of the impulsively started flow past a unit

(R ¼ 1) circular cylinder in the infinite plane. The geometry of the problem naturally dictates the use of the
polar PPE formulation of the NSE, to which the transformation z ¼ log r is applied resulting in an ex-

ponentially stretched grid radially. The governing equations, written using radially scaled velocity com-

ponents defined by

u ¼ ðu; vÞ ¼ rðU ; V Þ ¼ ezðU ; V Þ; ð6:1Þ

where U and V are the radial and tangential polar form velocities, respectively, are given by

u
v

� �
t

þ 1

e2z
uuz þ vuh � ðu2 þ v2Þ

uvz þ vvh

� �
þ pz

ph

� �
¼ m

e2z
Dðz;hÞu� 2ðuz þ vhÞ
Dðz;hÞv� 2ðvz � uhÞ

� �
ð6:2a–bÞ

and

Dðz;hÞp ¼ � 2

e2z
u2
�

þ v2 þ uvh þ uhvz � uzvh � uhv� vvz � uuz
�
: ð6:3Þ

The incompressibility condition in the ðz; hÞ variables is given by rðz;hÞ � u ¼ ðuz þ vhÞ ¼ 0, and thus we set

the last term in (6.2a) equals to zero. At the cylinder surface C the no-slip boundary condition ujC ¼ 0 is

enforced for the velocity field. In this geometry the Neumann pressure boundary condition (1.2c) is given by

pzjC ¼ �mðvhz � uhhÞjC ¼ �mvhzjC; ð6:4Þ

where we have used the no-slip condition ujC ¼ 0. A one-sided second order discretization of this boundary

condition reads
Fig. 11. A representative exponentially stretched (radially) polar grid Xh for the flow past a cylinder.
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pzjC ¼ �m
4v1;jþ1 � v2;jþ1 � 4v1;j�1 þ v2;j�1

4DzDh
: ð6:5Þ

Here, v1;j (v2;j) denotes the value of v one (two) grid point from the boundary, and at the jth grid point in
the angular direction.

The momentum equation (6.2) and PPE (6.3) were discretized using second order centered finite dif-

ference approximations. Symmetry of the flow was assumed along the horizontal centerline, and the

computational grid Xh (with Dz ¼ log 16=N and Dh ¼ p=N ) extended to a radius of z ¼ log 16 (r ¼ 16). A

representative grid is shown in Fig. 11. At the far-field computational boundary rmax ¼ 16, conditions for

both u and p corresponding to a potential flow with unit free-stream velocity at infinity were applied, which

for u is given by

ðu; vÞ ¼ ððrmax � 1=rmaxÞ cos h;�ðrmax þ 1=rmaxÞ sin hÞ ð6:6Þ

with pz determined at the far-field by substitution of (6.6) into (6.2a). The Reynolds number was taken as

Re ¼ 550 ¼ ð2RÞ=m ¼ 2=m and solutions computed until t ¼ 3:0 with three grid resolutions: N ¼ 256, 512,

and 1024. Fourth order Runge–Kutta time stepping was used, with CFL ¼ 0:75 and Dt determined by the

minimum of (3.1) and (3.2), and Dx ¼ minfDz;Dhg.

Remark. We point out that explicit treatment of the pressure term in conjunction with the local pressure

boundary condition discussed in (I) of Section 2 was implemented in the authors previous work for the

cylinder flow [20]. However, as we stated in Section 2, using (2.2) to derive a local pressure boundary
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Fig. 12. Vorticity contours of the flow past a cylinder for Re ¼ 550 at time t ¼ 3:0. Contour levels are (�12:1:12), excluding 0.
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condition requires that a diffusive stability time constraint must be satisfied, even if the viscous term is

treated implicitly. Fortunately, if it were the case that implicit treatment of the viscous term was warranted

(low Reynolds number flow) this restriction is removed completely by instead using the pressure boundary
condition (1.2c) (here in the form of (6.4)).
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Fig. 13. Comparison of total drag for flow past a cylinder.
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We compare the results above with computations of the polar form of a ðx;wÞ formulation of the NSE,

to which the transformation z ¼ log r has been applied. The governing equations are given by (with u
defined as in (6.1))

e2zxt þ ðuxÞz þ ðvxÞh ¼ mDðz;hÞx;

Dw ¼ �e2zx;
ð6:7Þ

where u ¼ ð�wh;wzÞ, with boundary conditions

wjC ¼ 0 and
ow
on

����
C

¼ 0: ð6:8Þ

A fourth order spatial discretization of (6.7) and (6.8) was implemented using local vorticity boundary

conditions [20,19,8] and RK4 for the time discretization using the same parameters above for the ðu; pÞ
computation.

In Fig. 12 is shown the vorticity contours (levels �12:1:12) for N ¼ 1024. Excellent agreement is seen

between the two methods. A more sensitive comparison can be made using the computed coefficient of the
total drag (CD). In the vorticity-stream function, CD may be computed using

CD ¼ �2m
Z p

0

ox
oz

ð0; hÞ sin h dhþ 2m
Z p

0

xð0; hÞ sin h dh;

while in the velocity–pressure formulation by

CD ¼ �2

Z p

0

pð0; hÞ cos h dh� 2m
Z p

0

ov
oz

ð0; hÞ sin h dh:

The first image in Fig. 13 shows the computation of CD using the current PPE scheme. The initial

singular nature of the flow (impulsive start) at t ¼ 0 in clearly indicated, with the results of the compu-

tations on the two finest grids in very good agreement. Of particular interest in Fig. 13 is the comparison

between the fourth order ðx;wÞ computations of CD along with the ðu; pÞ scheme at the finest grid reso-

lution (all computations are in good agreement after t � 1:6). This is an important point, for the dominant

contribution to CD in the ðu; pÞ scheme is computed from the pressure, which is integrated along the surface

of the cylinder. This clearly indicates the accuracy of Neumann boundary condition (6.4) (or (1.2c)) in

recovering the pressure when solving the PPE.
7. Conclusion

We have presented a pressure Poisson formulation of the Navier–Stokes equations, along with a general

framework based on this formulation, for the development of accurate, stable and efficient numerical

methods for the simulation of incompressible flow. The key to these methods is a particular choice for the

Neumann pressure boundary condition for the pressure Poisson equation which allows explicit time
treatment of the pressure, which does not affect the time step stability constraint. This is proven rigorously

for the Stokes equation, and verified by systematic numerical experiments for the full nonlinear Navier–

Stokes equations. The computation of the velocity and pressure are completely decoupled, resulting in a
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class of extremely efficient methods. The methods are robust in that they can be applied to problems in both

the small or large Reynolds number regimes, i.e., the viscous term can be treated either implicitly or

explicitly in time. Moreover, the method is well suited for the computation of flows in general two- and
three-dimensional domains since standard C0 finite elements can be used for the spatial discretization.

Thus, no matter the flow regime of interest the computational cost is reduced to the solution of a standard

Poisson equation, and two or three (2D or 3D) Helmholtz equations in the case of implicit time discreti-

zation of the viscous term.
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Appendix A. MATLAB code for collocation implementation

In this section is listed the MATLAB code for the collocation method presented in Section 4. Note that

we have followed the naming convention used in [28] for the auxiliary variables required for the PPE solver.

The M-file cheb.m is taken from [34] with permission.
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Appendix B. Equivalence proof of the PPE formulation (4.1) and (1.1)

Theorem B.1. Assume f 2 L1ð½0; T �;HsÞ, s > 1=2. For u 2 L1ð½0; T �;H 2þsÞ \ Lip ð½0; T �;HsÞ the formula-

tion (1.1) of the Navier–Stokes equations is equivalent to the PPE formulation (4.1).

Proof. Assume ðu; pÞ is a solution of (1.1). Using r � u ¼ 0 we can rewrite the momentum equation (1.1a) in
rotational form as

ut þ ðu � rÞuþrp ¼ �mr�r� uþ f :

From this expression and the regularity assumptions of u and f , rp is in HsðXÞ. Taking the normal

component of the trace of the above equation along with ujC ¼ 0 gives

n � rp ¼ �mn � r � r� uþ n � f

on C, thus p satisfies (4.1c). Next, take the divergence of (1.1a), and using r � u ¼ 0 and u 2 L1ð½0; T �;H 2Þ
gives

Dp ¼ �r � ðu � ruÞ þ r � f :
Simple algebra andr � u ¼ 0 gives �r � ðu � ruÞ ¼ 1

2
ðr � uÞ2 � ðruÞ : ðruÞT. Thus, ðu; pÞ satisfy the the PPE

(4.1b). This proves that ðu; pÞ is also a solution to (4.1).

Now, assume ðu; pÞ is a solution of (4.1). All we need to show is that r � u ¼ 0. Take the divergence of

(4.1a) to obtain

otðr � uÞ þ r � ðu � ruÞ þ Dp ¼ mDðr � uÞ þ r � f :

Now replace Dp above with the right-hand side of (4.1b). Using the identity

r � ðu � ruÞ ¼ ðruÞ : ðruÞT þ u � rðr � uÞ
we obtain

otðr � uÞ þ u � rðr � uÞ þ 1

2
ðr � uÞ2 ¼ mDðr � uÞ:

Denoting / ¼ r � u, the above equation becomes

ot/þ u � r/þ 1

2
/2 ¼ mD/ ðB:1Þ

with initial data /jt¼0 ¼ 0. Rewrite (4.1a) as

ut þ ðu � rÞuþrp ¼ �mr�r� uþ mrðr � uÞ þ f :
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Again, the regularity assumptions for u and f imply rp is also in HsðXÞ. Taking the normal component of

the trace in the above equation and using ujC ¼ 0 gives

n � rp ¼ �mn � r � r� uþ n � rðr � uÞ þ n � f

on C. Comparing with (4.1c), we have

o/
on

¼ n � rðr � uÞ ¼ 0:

We now show using energy estimates that / equals zero almost everywhere. Multiply (B.1) by 2/ and

integrate over the domain X to obtain

d

dt

Z
X
/2 dxþ

Z
X
u � rð/2Þ dxþ

Z
X
/3 dx ¼ �2m

Z
X
jr/j2 dx:

Integration by parts also givesZ
X
u � rð/2Þ dx ¼ �

Z
X
ðr � uÞ/2 dx ¼ �

Z
X
/3 dx:

Hence, we have

d

dt

Z
X
/2 dxþ 2m

Z
X
jr/j2 dx ¼ 0 ðB:2Þ

with the initial conditionsZ
X
/2 dx ¼ 0 for t ¼ 0:

Hence, we haveZ
X
/2 dx ¼ 0

for all t > 0. Therefore, we have proved that / ¼ 0 a.e., or r � u ¼ 0 a.e., which proves that ðu; pÞ is also the

solution to (1.1), and completes the proof of the theorem. h
Appendix C. Normal mode analysis for the Stokes equations

Normal mode analysis is a commonly employed tool for investigating numerical schemes for the NSE. It

has proven invaluable in revealing the complicated and subtle behavior of numerical boundary layers in

projection methods [9,26]. Here we investigate the second order implicit time discretization (3.3) and (3.4)
of our PPE formulation (1.2) (or (2.7)) by applying normal mode analysis to a 1D model of the unsteady

2D Stokes equations. Full second order accuracy is shown for the velocity field and pressure, as well as the

divergence of the velocity field. Moreover, unlike projection methods, the flow variables are completely free

of any numerical boundary layers. We note that the same analysis, while a bit more cumbersome, can be

applied to the 3D Stokes equations.
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Consider the unsteady 2D Stokes equations given by

ut þrp ¼ mDu; ðC:1aÞ
r � u ¼ 0; ðC:1bÞ
ujx¼�1;1 ¼ 0 ðC:1cÞ

on the domain X ¼ ½�1; 1� � ð0; 2pÞ with periodic boundary conditions in y. Assume solutions of the form

u ¼ eiky ½uðx; tÞ; vðx; tÞ�T and p ¼ eikypðx; tÞ, let ev ¼ iv, and rename (for simplicity of notation) ev by v. Then
solutions of (C.1) reduce to a family of 1D problems indexed by k 2 Z given by

otuþ oxp ¼ mðo2x � k2Þu; otv� kp ¼ mðo2x � k2Þv; ðC:2aÞ
oxuþ kv ¼ 0; ðC:2bÞ
uð	1; tÞ ¼ vð	1; tÞ ¼ 0: ðC:2cÞ

Our equivalent PPE formulation (1.2) of (C.2) is given by

otuþ oxp ¼ mðo2x � k2Þu; otv� kp ¼ mðo2x � k2Þv; ðC:3aÞ
ðo2x � k2Þp ¼ 0; ðC:3bÞ
uð	1; tÞ ¼ vð	1; tÞ ¼ oxðp þ mkvÞð	1; tÞ ¼ 0: ðC:3cÞ

The 1D linear models (C.2) and (C.3) still embody the essential features of the NSE, i.e., an incompressible

velocity field and the presence of a viscous term, while allowing us to analyze in a simplified setting the

effects of discrete time stepping.

Assuming normal mode solutions of (C.3) given by

ðu; v; pÞðx; tÞ ¼ ert ðbu;bv; bpÞðxÞ; ðC:4Þ

where we take r to be of the form r ¼ �mðk2 þ l2Þ, with conditions on l to be determined later. Plugging

(C.4) into the continuous PPE formulation (C.3) gives

mðo2x þ l2Þu ¼ oxp; mðo2x þ l2Þv ¼ �kp; ðC:5aÞ
ðo2x � k2Þp ¼ 0; ðC:5bÞ
uð	1Þ ¼ vð	1Þ ¼ oxðp þ mkvÞð	1Þ ¼ 0; ðC:5cÞ

where for simplicity we have dropped the bsymbol.
The system (C.5) admits two distinct families of solutions, one odd and one even (determined by the

choice of sinhðkxÞ or coshðkxÞ for pðxÞÞ. Since the analysis of each is similar, without loss of generality we

consider the odd solutions, given by

uðxÞ ¼ A
cos lx
cos l

	
� cosh kx

cosh k



; vðxÞ ¼ B

sin lx
sin l

	
� sinh kx

sinh k



;

pðxÞ ¼ sinhðkxÞ:
ðC:6Þ

The velocity boundary conditions in (C.5c) are clearly satisfied by u and v in (C.6). Moreover, plugging

(C.6) into (C.5a) it follows that

A ¼ � k cosh k
mðk2 þ l2Þ ; B ¼ k sinh k

mðk2 þ l2Þ : ðC:7Þ

A direct calculation applied to pðxÞ in (C.6) gives

oxðp þ mkvÞðxÞ ¼ mkB
sin l

l cos lxþ 1

	
� mkB
sinh k



k cosh kx: ðC:8Þ
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Thus in order to satisfy the boundary condition for p in (C.5c) we must have that

mkBl cot lþ ðsinh k � mkBÞk coth k ¼ 0 or k tanh k þ 1

l
k sinh k

mB

	
� k2



tan l ¼ 0;

which after substitution of the expression for B in (C.7) gives an equation for l, namely

k tanh k þ l tan l ¼ 0: ðC:9Þ

Rewriting (C.9) gives l ¼ �k tanh k cot l, thus for each fixed k a solution l is given by the intersection of

the linear function l and the curve �k tanh k cot l, the latter of which has a range of �1 to 1 over each
interval ð‘; ð‘þ 1ÞpÞ for ‘ 2 Z. Hence for every k; ‘ ¼ 0;	1;	2; . . ., Eq. (C.9) has a unique real solution l in

ð‘p; ð‘þ 1ÞpÞ. Furthermore, for m > 0 it then follows that r < 0 in (C.4), and as expected solutions decay in

time.

Finally, from (C.6) and (C.7) and (C.9) we have

oxuþ kv ¼ k cosh k
mðk2 þ l2Þ l

sin lx
cos l

	
þ k

sinh kx
cosh k



þ k2 sinh k
mðk2 þ l2Þ

sin lx
sin l

	
� sinh kx

sinh k



¼ k

mðk2 þ l2Þ
cosh k
sin l

ðl tan lþ k tanh kÞ sin lx ¼ 0; ðC:10Þ

showing that incompressibility is indeed satisfied in the PPE formulation.

With the groundwork now laid we examine a discrete time discretization of the PPE system. Following

(3.3) and (3.4), a second order semi-implicit time discretization of (C.1) is given by

unþ1 � un

Dt
þ ox

3

2
pn

	
� 1

2
pn�1



¼ mðo2x � k2Þ ðu

nþ1 þ unÞ
2

;

vnþ1 � vn

Dt
� k

3

2
pn

	
� 1

2
pn�1



¼ mðo2x � k2Þ ðv

nþ1 þ vnÞ
2

;

ðo2x � k2Þpnþ1 ¼ 0;

unþ1ð	1Þ ¼ vnþ1ð	1Þ ¼ oxðp þ mkvÞnþ1ð	1Þ ¼ 0:

ðC:11Þ

Keeping space continuous, assume normal mode solutions for (C.11) of the form

ðu; v; pÞnðxÞ ¼ jn ðbu;bv; bpÞðxÞ: ðC:12Þ

Plugging (C.12) into (C.11) gives (and for simplicity of presentation dropping the b symbol)

j� 1

Dt
uþ 3j� 1

2j
oxp ¼ m

jþ 1

2
ðo2x � k2Þu; j� 1

Dt
v� 3j� 1

2j
kp ¼ m

jþ 1

2
ðo2x � k2Þv;

ðo2x � k2Þp ¼ 0;

uð	1Þ ¼ vð	1Þ ¼ oxðp þ mkvÞð	1Þ ¼ 0:

ðC:13Þ

Introducing el, let
2ðj� 1Þ
ðjþ 1ÞDt ¼ �mðk2 þ el2Þ ) j ¼ 2� mðk2 þ el2ÞDt

2þ mðk2 þ el2ÞDt : ðC:14Þ
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Substitution of the first expression of (C.14) into (C.13) gives

mðo2x þ el2Þu ¼ 3j� 1

jðjþ 1Þ oxp; mðo2x þ el2Þv ¼ � 3j� 1

jðjþ 1Þ kp; ðC:15aÞ

ðo2x � k2Þp ¼ 0; ðC:15bÞ

uð	1Þ ¼ vð	1Þ ¼ oxðp þ mkvÞð	1Þ ¼ 0: ðC:15cÞ

The odd solutions of (C.15) take the form

uðxÞ ¼ eA cos elx
cos el

	
� cosh kx

cosh k



; vðxÞ ¼ eB sin elx

sin el
	

� sinh kx
sinh k



; ðC:16aÞ

pðxÞ ¼ sinhðkxÞ: ðC:16bÞ

Note that u and v in (C.16a) and (C.16b) satisfy the boundary conditions uð	1Þ ¼ vð	1Þ ¼ 0, and by
substitution of (C.16a), (C.16b) into (C.15a) we see that

eA ¼ � 3j� 1

jðjþ 1Þ
k cosh k

mðk2 þ el2Þ ;
eB ¼ 3j� 1

jðjþ 1Þ
k sinh k

mðk2 þ el2Þ : ðC:17Þ

Since

oxðp þ mkvÞðxÞ ¼ mkeB
sin el el cos elxþ 1

 
� mkeB
sinh k

!
k cosh kx;

in order to satisfy the pressure boundary condition in (C.15c) we must have that

mkeBel cot el þ ðsinh k � mkeBÞk coth k ¼ 0 ) k tanh k þ 1el k sinh k

meB
	

� k2


tan el ¼ 0: ðC:18Þ

A direct computation using eB from (C.17) and j from (C.14) gives

1el k sinh k

meB
	

� k2



¼ el þ ðj� 1Þ2

3j� 1

k2 þ el2el ¼ el þ m2ðk2 þ el2Þ3elð1� mðk2 þ el2ÞDtÞDt
2;

which upon substitution into the last expression of (C.18) gives

k tanh k þ el þ m2ðk2 þ el2Þ3elð1� mðk2 þ el2ÞDtÞDt
2

!
tan el ¼ 0: ðC:19Þ

Comparing the above with (C.9), for each fixed k and l we have el ¼ lþOðDt2Þ, and a direct computation

gives

j� erDt ¼ 2� mðk2 þ el2ÞDt
2þ mðk2 þ el2ÞDt � 1þ mðk2 þ l2ÞDt � m2

2
ðk2 þ l2Þ2Dt2 þOðDt3Þ ¼ OðDt3Þ: ðC:20Þ

Comparing (C.4) and (C.12), (C.20) shows that the scheme (C.12) is fully second order accurate in time.

Moreover, comparing (C.16) and (C.17) with (C.6) and (C.7) clearly indicates an absence of numerical

boundary layers in any of the flow variables. Finally, from (C.16), (C.17) and (C.19) we have
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oxuþ kv ¼ 3j� 1

jðjþ 1Þ
k

mðk2 þ el2Þ
cosh k
sin l

ðl tan lþ k tanh kÞ sin lx

¼ � 3j� 1

jðjþ 1Þ
kmðk2 þ el2Þ2elð1� mðk2 þ el2ÞDtÞ

cosh k
cos l

sin lx

 !
Dt2; ðC:21Þ

which shows that incompressibility is satisfied to second order accuracy.
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